If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20x+6=0
a = 4; b = -20; c = +6;
Δ = b2-4ac
Δ = -202-4·4·6
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{19}}{2*4}=\frac{20-4\sqrt{19}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{19}}{2*4}=\frac{20+4\sqrt{19}}{8} $
| y4=-9 | | 4+3(3x+5)=55 | | 0.3=10^x | | 3w+11=29 | | t-12=90 | | -11x-29=32 | | 8-2(4x-8)=24 | | 5(3x-2)-5x=80 | | x-5x+3=-29 | | -4(u+4)=3(u+4)7 | | 7x-3=9x+17 | | -3(3x-5)=42 | | -19+x/2=3 | | 4p^2-12p=9 | | p+30+90=180 | | 13+r=-29 | | -4u-16=3u+9 | | -3x+5(x+2)=30 | | y-2y+y=2 | | R(x)=x(60-3x) | | 20-2x=70 | | 2y+3(y-2)=-36 | | (8-4x)(6-2x)=30 | | y-29=51 | | 3(4x+3)+4=37 | | 6.25=1.2x | | 2v+7(v+8)=20 | | 8x−6=18 | | -34-3x=8x+46 | | 19×y=405 | | 60=15(x-3) | | 180-8d=160-6d |